Convective processes in high resolution models: Impact of the lead time of the simulation

Autores/as

  • Alvaro Lavin-Gullon Santander Meteorology Group, Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Santander, Spain
  • Jesus Fernandez Santander Meteorology Group, Dpto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain
  • Rita M. Cardoso Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa.
  • Klaus Goergen Institute of Bio-and Geosciences (IBG-3), Research Centre Jülich, Jülich. Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich
  • Sebastian Knist Meteorological Institute, University of Bonn, Bonn
  • Torge Lorenz Uni Research Climate, Bjerknes Centre for Climate Research, Bergen
  • Josipa Milovac Institute of Physics and Meteorology, University of Hohenheim, Stuttgart
  • Pedro M. M. Soares Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa
  • Stefan Sobolowski Uni Research Climate, Bjerknes Centre for Climate Research, Bergen
  • Heimo Truhetz Wegener Center for Climate and Global Change, University of Graz
  • Kirsten Warrach-Sagi Institute of Physics and Meteorology, University of Hohenheim, Stuttgart

DOI:

https://doi.org/10.30859/ameJrCn35p388

Palabras clave:

internal variability, WRF, RCM, multi-physics, ensemble, The Alps, heavy precipitation, convection-permitting, uncertainty

Resumen

Most heavy precipitation events occurring in the world are associated with convective processes. As these phenomena produce severe economic and societal impacts, it is crucial to get to know their behaviour and their evolution in a future climate. For this reason, the international project CORDEX (Coordinated Regional climate Downscaling Experiment) proposed the Flagship Pilot Study on Convective phenomena at high resolution over Europe and the Mediterranean, focused on the study of convection in Europe. In this initiative, multi-model and multi-physics results and uncertainties of regional climate models (RCMs) are explored by means of ensembles of simulations. In this work, we additionally explore the role of internal variability to explain the differences found in the results by different model configurations.

Biografía del autor/a

Jesus Fernandez, Santander Meteorology Group, Dpto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain

Dpto. de Matemática Aplicada y Ciencias de la Computación

Citas

Caya, D., Biner, S., 2004. Internal variability of RCM simulations over an annual cycle. Climate Dynamics. 22:33-46

Christensen, O.B, Gaertner, M.A., Prego, J.A, Polcher, J. 2001. Internal variability of regional climate models. Climate Dynamics. 17: 875–887

Coppola, E., Sobolowski, S., Pichelli, E., Raffaele F., Ahrens, B., Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, et al., 2018. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics. Submitted.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., et al., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Royal Meteorological Society. 137: 553-597

Giorgi, F., Bi, X., 2000. A study of internal variability of a regional climate model. Journal of Geophysical Research. 105: 29.503-29.521

Laux, P., Nguyen, P., Cullmann, J., Van, T. P., Kunstmann, H., 2017. How many RCM ensemble members provide confidence in the impact of land-use land cover change?. International Journal of Climatology. 37:2080-2100

Lucas-Picher, P., Caya, D., de Elía, R., Laprise, R., 2008. Investigation of regional climate models’ internal variability with a ten-member ensemble of 10-year simulation over a large domain. Climate Dynamics. 31:927-940

Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., et al., 2015. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 53:323–361

Rinke, A., Dethloff K., 2000. On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Climate Research. 14:101-113

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G, Huang, X.-Y., Wang, W., and Powers, J. G. , 2008. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113

Descargas

Publicado

2018-02-09